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Abstract. Power series for the parabolic cylinder function, DJz), are derived from known 
addition theorems, thus enabling a more compact and efficient expression of the function. 
One of the expansions is applied to find an asymptotic approximation for the function as 
I Y I  -t m with larg(-v)i C ?I. Next, a large-argument (2) asymptotic addition theorem is 
derived from an integal representation of D,(z). Before extending this type of summation 
theorem to the two general confluent hypergeometric functions, motivating mathematical 
applications to three integration problems are given a$ examples of the practical usefulness 
of the formulae. 

1. introauetion 

One definition of the parabolic cylinder function is 

D,(z) = 2””&exp -- ( 3 
(Erdblyi 1953, vol 2, p 117) where Kummer’s series is - ( u ) . x J  U U ( U + l ) X 2  

+ O  ( c ) , j !  c c ( c + l )  2 ,F,(a; e; x) = -= 1+-x+--+.. . 

(ErdClyi 1953, vol 1, p 248), and Pochhammer’s symbol is (a), = r (a  + j ) / r ( a )  = 
a(a + 1) . . . (a + j  - 1). For bounded argument z, the function can be calculated as the 
sum of two power series from (1) and (2). Alternatively, Lebedev (1972, pp288-9) 
combines the two series to get 

where r(-l)/r(-2) should be interpreted as -4, when v + l  eN. In the next section, 
an alternative form for (3) as well as a new power series are presented. Section 3 then 
considers an asymptotic addition theorem for the parabolic cylinder function. Next, 
the results of sections 2 and 3 are applied to finding three hitherto unresolved integrals. 
Finally, asymptotic addition theorems are similarly found for the more general cases 
of the two confluent hypergeometric functions (equation (2) is one of these functions). 
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2. The expansions 

Addition theorems for (1) have been derived in the case when the argument of the 
function is bounded (e.g. ErdClyi 1953, vol2, pp  119 and 124, Erd6lyi 1955, vol3, p 263): 

However, these theorems have not been previously exploited to  derive power series 
for the parabolic cylinder function. To do so, let x = O  in (4) and ( 5 ) ,  then use 
DJO) = 2”’*&/r[( 1 - ~ ) / 2 ] ,  the latter part being obtained from the conventional 
definition of D,(z) in (1) and (2). The resulting new expansions are 

Expansion (3) could be obtained by applying Legendre’s duplication formual to (7) 
then simplifying by transforming some of the gamma functions therein into ones with 
arguments of the opposite sign. This explains why (3) obscures the picture when 
v + 1 E N  and the expansion-which is then related to the Hermite polynomials- 
terminates after 1 + int(uj2) terms. (The int(x) function returns the largest integer that 
is less than or equal to x) 

Formulae (6) and (7) are the most compact and numerically efficient series 
expansions for D&) when z is finite. The former becomes more efficient as I uI increases. 
In addition to these advantages of (6)  and (7) over the old formulae (1) and (3), one 
can now derive new approximations for the parabolic cylinder function under certain 
conditions. For example, using (6 ) ,  one can find that for z bounded and IuI+cO with 
larg(-v)l< 

(cf Abramowitz and Stegun 1965, p 689, Erdelyi 1953, vol 2, p 123). The asymptotic 
expansion of the ratio of the gamma functions on the first line of (8) is achieved with 
the help of a formula in ErdClyi (1953, vol 1, p47). 

3. The addition theorem 

When the argument x + y  is large, (4) and ( 5 )  become numerically less efficient and 
analytically less valuable. The following theorem derives an unconventional addition 
formula for the parabolic cylinder function with a large argument. Jt is unconventional 
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because of the asymptotic nature of the sum, which is non-convergent. Nevertheless, 
it will be demonstrated that, in spite of its non-convergence, such a formula is not 
only numerically efficient for large arguments, but also analytically very useful for any 
value of the argument. 

Theorem 1.  If x is bounded and l y l - ta ,  with l a rgy l<3~ /4 ,  then 

exp($)D,(x+y)= x + Y ) 2  y“’He,(x)+O(y”~“) 
i=O 

(9)  

where Hej(x) are Hermite’s polynomials. 

Proox Consider the integral representation (Gradshteyn and Ryzhik 1980, p 1064) 

exp(%)D,(x+y) X + Y I 2  
= 8 (y)” exp[ -2( f -7)’] i (x+y)  df 

TI -m 

whereRevz-1  andargt’=v?riwhen t<O.Lettings=f-iy/2, 

-m m-,y/2 

= I ----I y , 2 +  I-:+ jm 
where the range of integration was deformed by the Cauchy-Goursat theorem since 
the integrand is analytic in the rectangle with coordinates (fm, Im(-iy/2)) and (*a, O), 
bounded by the paths of integration. The first and third integrals are zero since 
their real paths are unaffected by y and the integrand tends to zero as Is/ + 00 with 
largsl .cr /4or  lv-argsl<n/4.  So 

exp( +) x + y ) 2  Dv(x+y)= $exp(:) j5 -5 (y+~)”exp(-2s2+2isx)ds .  

Because of the binomial term, the integrand is multiple valued. Taking the principal 
value and expanding asymptotically for y,  then 

exp( q) D,(x+ y )  

= <exp(:) ,=O “i’(:)~”-~ I5 -m (~) ’exp(-2s2+2isx)ds+Q 

where it can be shown along a line of argument similar to that of Whittaker and Watson 
(1927, pp342-3) that R. is bounded and is of O(y”-”). By using (10) again, the 
expansion can be written as 

When Re v = -1, taking the Cauchy principal value allows the use of the above integral 
representation as an intermediate tool for the proof. When Re Y < - 1, the result follows 
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recursively by differentiating both sides of (9) with respect to y according to ErdClyi 
(1953, vol 2, equation 8.2(15)) with an initial value of -1 s Re u<O. This completes 
the proof of the theorem. U 

This result is a generalization of a finite summation theorem given in Erdklyi (1955, 
vol 3, p 263). His restriction of U+ 1 EN has been removed here. When U + 1 E N ,  the 
sum in j is finite and the expansion is exact and valid for any x + y e  @. Otherwise, 
the expansion is non-convergent and, if used for numerical purposes, only the first 
few terms should be taken and the point of truncation for the series is decided according 
to the precision required. The order of the asymptotic approximation is then given by 
the leading term of the remainder. 

Note that (9) encompasses an asymptotic expansion of the parabolic cylinder 
function given in Erdilyi (1953, vol2, p 122). Letting x = 0 in (9) gives us the asymptotic 
expansion of the function for larg yl < 371/4. 

4. Applications 

In addition to the numerical efficiency considered earlier, the new sums of sections 2 
and 3 are useful in solving analytical problems. First, let us consider an application 
of the new expansion (6). Define the Mellin transform as 

with p> -1. This integral cannot be found in any of the major published tables (e.g. 
Abramowitz and Stegun 1965, Gradshteyn and Ryzhik 1980, Oberhettinger 1974, 
Oberhettinger and Badii 1973). Using (6), it becomes 

= a-”-’T(p+ 1) exp(-x2/4)D,-,-,(x) (12) 

where the last step follows from (6), and the step before from Oberhettinger (1974, 
p 145). 

The next application involves finding two Laplace transform pairs with the help 
of theorem 1.  Special cases of these results abound in most tables, but the general 
integrals are nowhere available. Define 2{ } and 2-’{ ) as the Laplace transform and 
inverse Laplace transform operators with parameters p and 1, respectively. Also, follow 
Oberhettinger and Badii (1973) in denoting real positive parameters by Latin’ letters 
and complex parameters by Greek letters. Then: 

6) 1, = ze-’{exp(-av$)(b +GI”/+}, 
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Expanding the binomial term about the branch point p = 0, and integrating termwise 
gives an asymptotic expansion similar to (9): 

(from Oberhettinger and Badii 1973, p 259) 

Expanding the parabolic cylinder function according to (9), 

where the Laplace inversion is obtained from Oherhettinger and Badii (1973, p 259), 
and the last expression from the summation theorem in Gradshteyn and Ryzhik (1980, 
p 1066) subject to the additional condition that Re v>O.  

Integrals of this type have proved their worth in solving long-standing problems 
in mathematical statistics (e.g. see Abadir (1993a, b) for a discussion of and solution 
to some problems first posed in the 1950s). In particular, I, comes up quite frequently 
when dealing with Brownian motion and Ornstein-Uhlenheck processes (op. cif. for 
references). 

5. Other asymptotic addition theorems 

The finite-argument definition of Kummer’s function is given in (2), and Tricomi’s 
function is related to it by 

(Erddyi 1953, vol 1, p257). Both ( 2 )  and (13) are catled confluent hypergeometric 
functions. In this section, asymptotic summation theorems for (2) and (13) will be 
derived from integral representations of these functions. This method has been used 
in section 3 above for the parabolic cylinder function, which is a special case of the 
confluent hypergeometric functions. 

0237”’02538 
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Theorem 2. For x bounded and Re y + -a, 

Proof: The integral representation (e.g. see Erdilyi 1953, vol 1 ,  p 273, Oberhettinger 
and Badii 1973, p 239) 

, m a ;  C; t )  =r(c)2-1{s-y1 - r / s ) - a }  

,F,(a; C ;  x+4')=r(c)~-'{s-c( i - (x+r)/s)-n} 

where the Laplace inverse operator (Y'{)) has unit parameter, leads to 

( - y )  -= - j  

, Fl(- j ;  c -  a - j ;  x)+ R. T(c - a - j )  
= r(c) 'i' (;') 

j = 0  

where R ,  can be sh vn to be bounded and of O[(-v)-"-"I by the method deta 
in Whittaker and Watson (1927, pp 342-3). On the first and last expressions of the 
proof, when either 1 - c or 1 -t a - c E N, the expressions are valid in the limit (ErdMyi 

0 1953, vol 1, p 260), thus completing the proof. 

It is clear that the theorem reduces to the asymptotic expansion of Kummer's 
function for x=O and Rey-r  -a (cf Erdilyi 1953, vol 1,  p278). Note that Kummer's 
function on the right-hand side is a finite sum, thus enhancing the efficiency of the 
expansion. Finally, the formula is still of use when the argument of Kummer's function 
is large and positive. In this case, Kummer's transform (Erd6lyi 1953, vol 1,  p253) 
has to be applied to the original function first, in order to transform it into another 
Kummer's function with an argument of the opposite (negative) sign, thereby making 
it fit the description of theorem 2. In other words, the repeated application of 
theorem 2 and Kummer's transform leads to 

, F , ( a ;  c; X + Y )  

+O[ya'-c-m exp(x+y)] (14) 

which is the full ([U[+ m) asymptotic expansion of Kummer's function, thus generalizing 
the corresponding form given in Erddyi (1953, vol 1, p 278). 

Theorem 3 gives the equivalent result for Tricomi's function, as follows. 
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Theorem 3. For b Z, y bounded and Re x -f m, 

V ( a ; a - b ; x + y ) =  1 ( ;a)x-"7p(-;; .-;-b; y)+o(x-"-") 
j = 0  

= "i' (:a)( b + l)jx-u-' IFl( - j ;  - j  - b ;  y )  +O(X-~-"). 
j = 0  

Proof: Using the relation between the inverse Mellin and inverse Laplace transforms, 
the integral representation (e.g. Oberhettinger 1974, p 170) 

V ( a ;  a - b ;  t ) = r ( - b ) 2 ' - ' { s * ( t - ~ ) - ~ }  

Y ( a ;  a - b ;  x + y ) = r ( - b ) Y - ' { s b ( x + y - s ) - " }  
where the Laplace inverse operator has unit parameter, is obtained. It leads to 

= r ( - b ) 2 ' - ' [ ' i ' ( ~ a ) x - " 7 s b ( y - s ) '  j = o  J + R ,  

= r ( - b )  j = o  ( -a)x-"- ' . re- ' {sb(y-s) ' }+R.  I 

where R, can be shown to be bounded and of O[(-y)-"-"] by the method detailed 
in Whittaker and Watson (1927, pp 342-3). For the second expansion quoted in the 
theorem, use ( 1 3 )  to substitute for Tricomi's function on the last line of ( 1 5 ) .  Since 
limu+J Ir(-v)[ =a?, the result is 

*(a ;  a -  b; x + y )  

- - " i ' ( ; a ) x - ' - J ( ( b + l ) j  'F1( - j ;  - j - b ; y )  
j = O  

, F , ( b +  1 ;  j +  b + 2 ;  y )  
r ( - j - b - l )  . + 

U - j )  

= "i' (;a) ( b  + I)'x-"' ,Fl ( - j ;  -j - 6 ;  y )  + O(x-'-'') 
j - 0  

which completes the proof. 

Similar remarks apply as before: the theorem reduces to the asymptotic expansion 
ofTricomi's function when x dominates y (cf Erdelyi 1953, vol 1, p 278), and Kummer's 
function on the right-hand side is a finite sum which enhances the efficiency of the 
expansion. Moreover, comparing theorem 2 with the second result of theorem 3 (or 
the argument of both Laplace inverse transforms in the proofs) gives an insight into 
the different sign characteristics of the two confluent hypergeometric functions (com- 
pare - y  with x, and l / r ( c -  a - j )  with T ( b  + 1 + j )  in theorems 2 and 3, respectively). 

The theorems derived in this section can help evaluate confluent hypergeometric 
functions when the argument is large. In addition, they can help in the derivation of 
closed forms for seemingly difficult integrals. For example, entry 2.4.17 of Oberhettinger 
and Badii (1972, p 239) may be easily derived by means of the simpler entry 2.4.18 
and theorem 2. 
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6. Conclusion 

The application of the new formulae presented here is by no means restricted to finding 
out new integrals. They can also be used for other purposes such as efficient numerical 
computations, deriving new asymptotic approximations as in ( S ) ,  or evaluating series 
of some transcendental functions which possess integral representations involving 
parabolic cylinder functions. The techniques presented here can also be extended to 
other transcendental functions to 6nd new expansions for them. 
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